Health Risk, Insurance and Optimal Progressive Income Taxation

Juergen Jung Chung Tran Towson University Australian National University

PWBM's Computational and Macroeconomics Seminars

October 2019

Marginal Tax Rates in the US: 2018–2025

Rate	For Unmarried Individuals, Taxable Income Over	For Married Individuals Filing Joint Returns, Taxable Income Over
10%	\$0	\$0
12%	\$9,525	\$19,050
22%	\$38,700	\$77,400
24%	\$82,500	\$165,000
32%	\$157,500	\$315,000
35%	\$200,000	\$400,000
37%	\$500,000	\$600,000

Tax Cuts and Jobs Act (effective 2018–2025)

- eliminates personal exemptions of \$4,150 and
- doubles standard deductions
 - Single: $$6,350 \Rightarrow $12,000$
 - Married Filing Jointly: $12,700 \Rightarrow 24,000$

How Progressive Should Income Tax Be?

Theory: Trade off between insurance and incentive effects

- **1** The redistribution/insurance effects:
 - Unequal initial conditions
 - Privately-uninsurable shocks (i.e., labor productivity and earnings)
- 2 The incentive effects:
 - Labor supply or human capital accumulation
 - Saving and investment

Common Views

1 Academic research: Less progressive

- Conesa and Krueger (2006)
- Heathcote, Storesletten and Violante (2017)
- 2 Policy practice: Less progressive
 - ► The US Tax Cuts and Jobs Act 2017: Trump's tax reform

The Role of Health

- Health is important source of risk and heterogeneity
 - Distinct health pattern over the lifecycle
 - Increasing health spending over the lifecycle
 - Health spending fluctuations are large (and persistent)

This Paper

- 1 Introduce health risk and health insurance to
 - standard incomplete markets, lifecycle model with heterogeneous agents
- 2 Study optimal degree of income tax progressivity
 - Ramsey (utilitarian) approach: market structure and tax instruments as given
- 3 Assess effects of health risk and health insurance systems
 - on optimal degree of tax progressivity

Summary

1 Optimal income tax is more progressive than current US taxes

- 2 Optimal tax is more progressive with health risk
 - Mechanism: More social insurance for the poor and low income working class
- **3** Welfare gains from switching to optimal tax are large
 - Over 5 percent in terms of compensating consumption
- 4 Optimal degree of tax progressivity depends on health insurance system
 - ▶ no insurance vs. ACA vs. universal public health insurance

Related Literature

- **1** On the optimal progressivity of income taxation:
 - Income risk: Conesa and Krueger (2006), Heathcote, Storesletten and Violante (2017)
 - Human capital: Erosa and Koreshkova (2007), Guvenen, Kuruscu and Ozkan (2014), Badel and Huggett (2015), Krueger and Ludwig (2016)
 - Housing: Chambers, Garriga and Schlagenhauf (2009)
 - Health: ?
- **2** Quantitative health/macroeconomics:
 - ► Health risk and insurance: Jeske and Kitao (2009), Pashchenko and Porapakkarm (2013) and Capatina (2015)
 - Social insurance: Kopecky and Koreshkova (2014)
 - Endogenous health and insurance: Cole, Kim and Krueger (2016), Jung and Tran (2016*a*,*b*); Jung, Tran and Chambers (2017)
 - Health risk and taxation: ?

Model

Modeling Framework

- General equilibrium, overlapping generations: age 20 to 90
- Agent heterogeneity: shocks to labor productivity and health
- Health as consumption and investment goods
- The US tax and transfer system:
 - Progressive income taxes
 - Public health insurance: Medicare & Medicaid
 - PAYG social security
 - Minimum consumption: Food stamp

Progressive Income Tax I

The parametric tax function from Benabou (2002) and used in Heathcote, Storesletten and Violante (2017):

$$\tilde{\tau}(\tilde{y}) = \tilde{y} - \lambda \tilde{y}^{(1-\tau)}$$

- $\tilde{\tau}(\tilde{y})$: net tax revenues as a function of pre-tax income \tilde{y}
- τ: a progressivity parameter governing the progressivity of a income tax system,
- λ : a scaling parameter to balance government budget

Progressive Income Tax II

• Special cases depend on value of τ :

(1) Full redistribution:
$$\tilde{\tau}(\tilde{y}) = \tilde{y} - \lambda$$
 and $\tilde{\tau}'(\tilde{y}) = 1$ if $\tau = 1$
(2) Progressive: $\tilde{\tau}'(\tilde{y}) = 1 - (1 - \tau)\lambda \tilde{y}^{(-\tau)}$ and $\tilde{\tau}'(\tilde{y}) > \frac{\tilde{\tau}(\tilde{y})}{\tilde{y}}$ if $0 < \tau < 1$
(3) No-Redistribution (proport.): $\tilde{\tau}(\tilde{y}) = \tilde{y} - \lambda \tilde{y}$ and $\tilde{\tau}'(\tilde{y}) = 1 - \lambda$ if $\tau = 0$
(4) Regressive: $\tilde{\tau}(\tilde{y}) = 1 - (1 - \tau)\lambda \tilde{y}^{(-\tau)}$ and $\tilde{\tau}'(\tilde{y}) < \frac{\tilde{\tau}(\tilde{y})}{\tilde{y}}$ if $\tau < 0$

The US Progressive Income Tax Function

- We model transfers explicitly (e.g., foodstamps, Medicaid)
- Use parametric function from Benabou (2002) and Heathcote, Storesletten and Violante (2017) with a non-negative tax restriction, $\tilde{\tau}(\tilde{y}) \geq 0$,

$$ilde{ au}\left(ilde{y}
ight)=\max\left[0,\, ilde{y}-\lambda y^{\left(1- au
ight)}
ight]$$

The US Health Insurance System

- Private health insurance:
 - Group based health insurance (GHI)
 - Individual based health insurance (IHI)
- Public (social) health insurance:
 - Medicaid for low income
 - Medicare for retirees
- Health insurance status for workers:

$$in_{j} = \begin{cases} 0 & \text{if No insurance} \\ 1 & \text{if IHI} \\ 2 & \text{if GHI} \\ 3 & \text{if Medicaid} \end{cases}$$

Out-of-Pocket Health Spending

• Out-of-pocket health expenditures depend on insurance state

$$o(m_j) = \begin{cases} p_m^{in_j} \times m_j, & \text{if } in_j = 0\\ \rho^{in_j} \left(p_m^{in_j} \times m_j \right), & \text{if } in_j > 0 \end{cases}$$

Preferences and Technology

Preferences:

$$u(c, l, h) = \frac{\left(\left(c^{\eta} \times \left(1 - l - \mathbb{1}_{[l>0]}\overline{l}_{j}\right)^{1-\eta}\right)^{\kappa} \times h^{1-\kappa}\right)^{1-\sigma}}{1-\sigma}$$

Health capital:

$$h_{j} = \overbrace{\phi_{j}m_{j}^{\xi}}^{\text{Investment}} + \overbrace{\left(1 - \delta_{j}^{h}\right)h_{j-1}}^{\text{Trend}} + \overbrace{\epsilon_{j}^{h}}^{\text{Disturbance}}$$

Human capital ("labor"): $e_j = e\left(artheta, h_j, \epsilon_j^l\right)$

Health, labor income and employer insurance shocks:

$$\Pr\left(\epsilon_{j+1}^{h}|\epsilon_{j}^{h}\right) \in \Pi_{j}^{h} \text{ , } \Pr\left(\epsilon_{j+1}^{\prime}|\epsilon_{j}^{\prime}\right) \in \Pi_{j}^{\prime} \text{ and } \Pr\left(\epsilon_{j+1}^{GHI}|\epsilon_{j}^{GHI}\right) \in \Pi_{j,\vartheta}^{GHI}$$

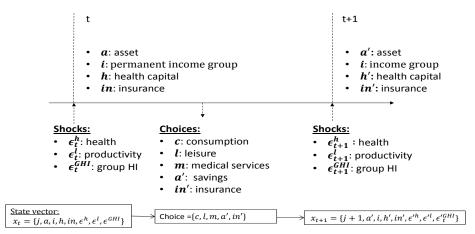
Technology and Firms

• Final goods C production sector for price $p_C = 1$:

$$\max_{\{K, L\}} \left\{ F(K, L) - qK - wL \right\}$$

Medical services M production sector for price p_m:

$$\max_{\{K_m, L_m\}} \left\{ p_m F_m \left(K_m, L_m \right) - q K_m - w L_m \right\}$$


■ *p_m* is a base price for medical services

Price paid by households depends on insurance state:

$$p_{j}^{\textit{in}_{j}}=\left(1+
u^{\textit{in}_{j}}
ight)p_{m}$$

\$\nu\$^{in_j}\$ is an insurance state dependent markup factor
 Profits are redistributed to all surviving agents

Household Problem

Worker's Dynamic Optimization Problem

$$V(x_{j}) = \max_{\{c_{j}, l_{j}, m_{j}, a_{j+1}, in_{j+1}\}} \left\{ u(c_{j}, h_{j}, l_{j}) + \beta \pi_{j} E\left[V(x_{j+1}) \mid \varepsilon_{j}^{l}, \varepsilon_{j}^{h}, \varepsilon_{j}^{GHl} \right] \right\}$$

s.t.
$$\left(1 + \tau^{C} \right) c_{j} + (1 + g) a_{j+1} + o(m_{j})$$

$$+ 1_{\{in_{j+1} = 1\}} \text{prem}^{\mathsf{IHI}}(j, h)$$

$$+ 1_{\{in_{j+1} = 2\}} \text{prem}^{\mathsf{GHI}} = y_{j}^{W} - tax_{j} + t_{j}^{\mathsf{SI}},$$

$$0 \leq l_{j} \leq 1,$$

 $0 \leq a_{j+1},$

$$h_j = i\left(m_j, h_{j-1}, \delta^h, \epsilon_j^h\right)$$

Worker's Dynamic Optimization Problem

$$y_j^W = e\left(\vartheta, h_j, \varepsilon_j^l\right) \times l_j \times w + R\left(a_j + t^{\mathsf{Beq}}\right) + \mathsf{profits},$$

$$tax_j = ilde{ au} \left(ilde{ extbf{y}}_j^W
ight) + tax_j^{SS} + tax_j^{Mcare},$$

$$\tilde{y}_j^W = y_j^W - a_j - t^{\mathsf{Beq}} - \mathbb{1}_{[in_{j+1}=2]}\mathsf{prem}^{\mathsf{GHI}} - 0.5\left(tax_j^{SS} + tax_j^{\mathsf{Med}}\right),$$

$$tax_{j}^{SS} = \tau^{Soc} \times \min\left(\bar{y}_{ss}, e\left(\vartheta, h_{j}, \varepsilon_{j}^{l}\right) \times l_{j} \times w - \mathbb{1}_{[in_{j+1}=2]} \mathsf{prem}^{\mathsf{GHI}}\right),$$

$$tax_{j}^{\mathsf{Mcare}} = \tau^{\mathsf{Mcare}} \times \left(e\left(\vartheta, h_{j}, \varepsilon_{j}^{\prime}\right) \times I_{j} \times w - \mathbb{1}_{[in_{j+1}=2]}\mathsf{prem}^{\mathsf{GHI}} \right),$$

$$t_j^{\mathsf{SI}} = \max\left[0, \underline{c} + o(m_j) + tax_j - y_j^{W}\right].$$

Retiree's Dynamic Optimization Problem

$$V(x_j) = \max_{\{c_j, m_j, a_{j+1}\}} \left\{ u(c_j, h_j) + \beta \pi_j E\left[V(x_{j+1}) \mid \varepsilon_j^h\right] \right\}$$

s.t.

$$(1 + \tau^{C}) c_{j} + (1 + g) a_{j+1} + \gamma^{\text{Mcare}} \times p_{m}^{\text{Mcare}} \times m_{j} + \text{prem}^{\text{Mcare}}$$
$$= R (a_{j} + t_{j}^{\text{Beq}}) - tax_{j} + t_{j}^{\text{Soc}} + t_{j}^{\text{SI}},$$
$$a_{j+1} \ge 0,$$

where

$$\begin{aligned} tax_{j} &= \tilde{\tau}\left(\tilde{y}_{j}^{R}\right) \\ \tilde{y}_{j}^{R} &= t_{j}^{\text{Soc}} + r \times \left(a_{j} + t_{j}^{\text{Beq}}\right) + \text{profits} \\ t_{j}^{\text{SI}} &= \max\left[0, \underline{c} + \gamma^{\text{Mcare}} \times p_{m}^{\text{Mcare}} \times m_{j} + tax_{j} - R\left(a_{j} + t_{j}^{\text{Beq}}\right) - t_{j}^{\text{Soc}}\right] \end{aligned}$$

Remaining Parts

- Insurance companies GHI and IHI clear zero profit condition Details
- Pension program financed via payroll tax Details
- Accidental bequests to surviving individuals Details
- Government budget constraint clears Details
- A competitive equilibrium Competitive Equilibrium Details

Calibration

Parameterization and Calibration

Goal: to match U.S. data pre-ACA (before 2010)

Data sources:

- MEPS: labor supply, health shocks, health expenditures, coinsurance rates
- PSID: initial asset distribution
- CMS: demographic profiles
- Previous studies: income process, labor shocks, aggregates

Production Function

Final goods production:

$$F(K,L) = AK^{\alpha}L^{1-\alpha}$$

Medical services production:

$$F_m(K_m, L_m) = A_m K_m^{\alpha_m} L_m^{1-\alpha_m}$$

Parameters from other studies

• A = 1 and A_m calibrated to match aggregate health spending

Health Capital

Health capital accumulation:

$$h_{j} = \overbrace{\phi_{j}m_{j}^{\xi}}^{\text{Investment}} + \overbrace{\left(1-\delta_{j}^{h}\right)h_{j-1}}^{\text{Trend}} + \overbrace{\epsilon_{j}^{h}}^{\text{Disturbance}}$$

- Health capital measure in MEPS: SF 12-v2
- $\delta^h \rightarrow \text{MEPS}|\text{insured \& 0-medical spenders} \rightarrow \bar{h}_j = \overbrace{\left(1 \delta_j^h\right)\bar{h}_{j-1}}^{\text{Trend}}$
- ϵ^h and Π^h from MEPS

Health Shocks

MEPS data split each cohort j into 4 risk groups

- Average health capital per risk group: $\left\{\bar{h}_{j,d}^1 > \bar{h}_{j,d}^2 > \bar{h}_{j,d}^3 > \bar{h}_{j,d}^4\right\}$
- Define shock magnitude:

$$\epsilon_{j}^{h} = \left\{0, \frac{\bar{h}_{j,d}^{2} - \bar{h}_{j,d}^{1}}{\bar{h}_{j,d}^{1}}, \frac{\bar{h}_{j,d}^{3} - \bar{h}_{j,d}^{1}}{\bar{h}_{j,d}^{1}}, \frac{\bar{h}_{j,d}^{4} - \bar{h}_{j,d}^{1}}{\bar{h}_{j,d}^{1}}\right\}$$

Assumption: Associate resulting health shock with risk group by ageNon-parametric estimation of transition probabilities health shocks

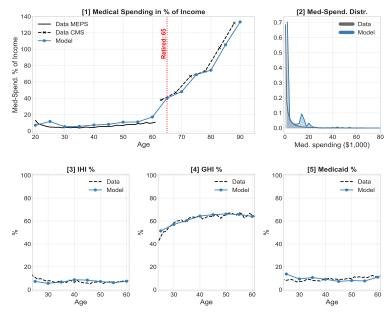
Human Capital

Price of Medical Services

- Medicare/Medicaid reimbursement rates (to providers) are about 70% of private HI rates (CMS)
- Average price markup for uninsured around 60% (Brown (2006))
- Large GHI can negotiate favorable prices (Phelps (2003))
- Price vector:

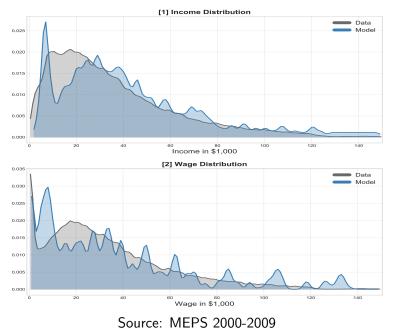
 $\left[\textit{p}_{m}^{\text{noIns}},\textit{p}_{m}^{\text{IHI}},\textit{p}_{m}^{\text{GHI}},\textit{p}_{m}^{\text{Maid}},\textit{p}_{m}^{\text{Mcare}}\right] = \left[1.70, 1.25, 1.10, 1.0, 0.90\right] \times \textit{p}_{m}$

More Calibration Details


Progressive Income Tax Function

Calibration of the Benabou (2002) tax function

$$ilde{ au}\left(ilde{y}
ight)=\max\left[0,\, ilde{y}-\lambda ilde{y}^{\left(1- au
ight)}
ight]$$


- Progressivity level \(\tau = 0.053\) as in Guner, Lopez-Daneri and Ventura (2016)
- Scaling factor $\lambda=1.095$ to match the relative size of the government budget

Health Expenditures and Insurance: Model vs. Data

Source: MEPS 2000-2009

Income and Wage Distribution: Model vs. Data

Calibration: Matched Moments

Moments	Model	Data	Source
- Medical exp. % HH income	17.6%	17.07%	CMS communication
- Workers IHI	5.6%	7.2%	MEPS 1999/2009
- Workers GHI	61.1%	62.2%	MEPS 1999/2009
- Workers Medicaid	9.6%	9.2%	MEPS 1999/2009
- Capital output ratio: K/Y	2.7	2.6 - 3	NIPA
- Interest rate: <i>R</i>	4.2%	4%	NIPA
- Size of Social Sec./Y	5.9%	5%	OMB 2008
- Size of Medicare/Y	3.1%	2.5-3.1%	U.S. Dept. of Health (2007)
- Medical spend. profile			MEPS 1999/2009
- IHI take-up profile			MEPS 1999/2009
- Medicaid take-up profile			MEPS 1999/2009
- Average labor hours			PSID 1984-2007
Total number of moments			

Analysis

Experiments I

- Benchmark economy with the pre-ACA health insurance system
- Consider the progressive income tax function

$$\tilde{\tau}(\tilde{y}) = \max\left[0, \, \tilde{y} - \lambda \tilde{y}^{(1-\tau)}\right]$$

Social welfare function is ex-ante lifetime utility of newborn in stationary equilibrium implied by τ̃ (ỹ, λ, τ):

$$WF(\lambda, \tau) = \int V(x_{j=1}|\lambda, \tau) d\Lambda(x_{j=1})$$

Find an optimal income tax code: choose {λ, τ} to maximize the social welfare function

Experiments II

$$WF^* = \max_{\{\lambda, \tau\}} \int WF(\lambda, \tau)$$
s.t.
$$\sum_{j=1}^{J} \mu_j \int tax_j (\lambda, \tau, x_j) d\Lambda(x_j) = \overline{C_G} + T^{SI}(\lambda, \tau)$$

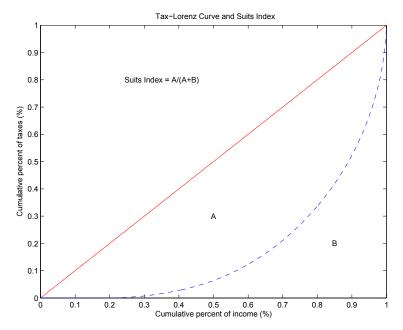
$$+ \text{Medicaid}(\lambda, \tau) + \text{Medicare}(\lambda, \tau)$$

$$- \tau^C C(\lambda, \tau) - \text{Medicare Prem}(\lambda, \tau),$$

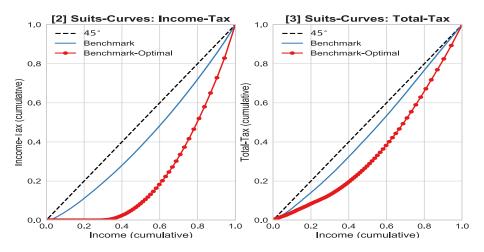
$$- \text{Medicare Tax}(\lambda, \tau)$$

▶ Note: Choose $\tau \Rightarrow \lambda$ adjusts to clear government budget s.t. C_G is constant

The Optimal Income Tax System

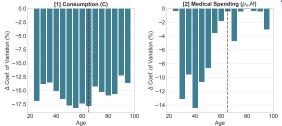

	[1] Benchmark	[2] Optimal Tax
Parameters:		
+ Progressivity: $ au$	0.053	0.247
+ Scaling: λ	1.095	2.411
+ Tax break	\$6,050	\$36,360

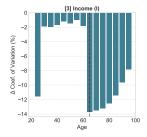
The Optimal Income Tax System [3] Marginal Tax Rate 50 40 30 % 20 10 Benchmark-U.S. Tax Benchmark-Optimal HSV (2017)-Optimal 0 CK (2006)-Optimal 150 50 100 200 0 Income in \$1,000


Measuring Tax Progressivity

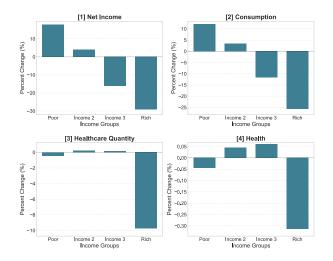
- How to measure the level of progressivity of a income tax system?
- Tax Progressivity Index (Suits Index): Suits (1977) measures income-tax inequality
 - Lorenz-type curve measuring the degree of disproportionality between pretax income and tax contributions
 - \Rightarrow relative concentration curve
- The Suits Index is a "Gini coefficient" for tax contributions by income group
 - ► +1 (most progressive) ⇒ entire tax burden allocated to households of highest income bracket
 - 0 for a proportional tax
 - ▶ -1 (most regressive) \Rightarrow entire tax burden allocated to households of lowest income bracket

Suits Index


Suit Index: Benchmark vs Optimal

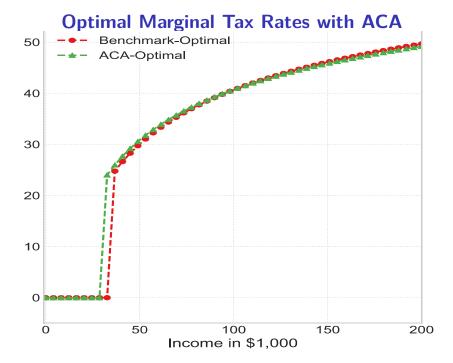


Aggregate Variables: Benchmark vs. Optimal


	[0] Benchmark: US Tax	[1] Optimal Tax
Output (GDP)	100	94.34
Capital (K_c)	100	93.55
Capital (K_m)	100	99.28
Weekly hours worked	29.40	29.03
Non- Med. Cons. (C)	100	93.13
Med. consumption (M)	100	99.42
Med. spending $(p_m M)$	100	100.46
Workers insured (%)	78.59	75.55
Medicaid (%)	9.56	6.19
Gini (Total income)	0.44	0.41
Gini (Net income)	0.38	0.31
Suits index (Income tax)	0.17	0.53
Welfare (CEV):	0	+5.64
 Income Group 1 (Low) 	0	+20.85
 Income Group 2 	0	+11.89
 Income Group 3 	0	-9.11
 Income Group 4 (High) 	0	-31.84

Changes due to Optimal Tax Progressivity

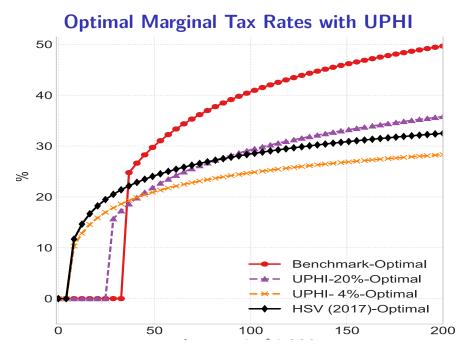
Changes due to Optimal Tax Progressivity



The Role of Health Insurance

- Redistribution/social insurance embedded in the health insurance system
- How does the design of the health insurance system affect the optimal income tax system?
 - The shape of the progressive tax function
 - The optimal progressive level
- Two alternative health insurance systems:
 - 1 Obamacare (ACA)
 - 2 Universal public health insurance (UPHI)

The Optimal Tax System after ACA


Parameters	[1] Opt. Tax - Bench.	[2] Opt. Tax - ACA
Progressivity ($ au$)	0.247	0.222
Scaling (λ)	2.411	2.118
Tax break	\$36,360	\$30, 300

The Optimal Tax System with UPHI

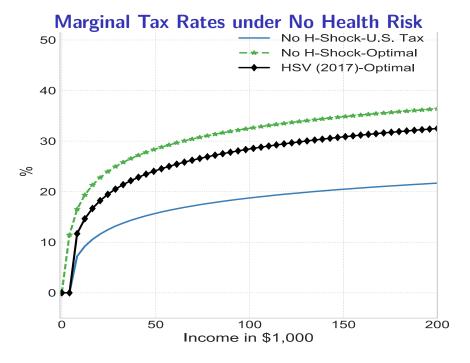
	[1] Bench.	[3.1] UPHI $\rho = 0.2$	[3.2] UPHI $\rho = 0.04$
Progressivity (au)	0.247	0.140	0.07
Scaling (λ)	2.411	2.118	1.117
Tax break	\$36, 360	\$26, 260	\$6,061

Optimal Marginal Tax Rates with UPHI ($\rho = 0.2$) Benchmark-Optimal UPHI-Optimal and a state of the state of the state of the state % Income in \$1.000

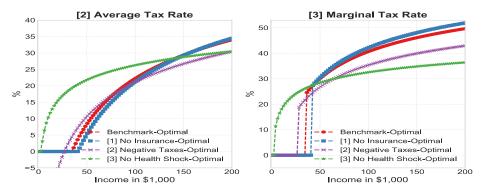
Two Extreme Cases

1 No health risk: Health capital accumulation

$$h_{j} = \overbrace{\phi_{j}m_{j}^{\xi}}^{\text{Investment}} + \overbrace{\left(1-\delta_{j}^{h}\right)h_{j-1}}^{\text{Trend}}$$


2 No health insurance: Remove the health insurance system (Self insurance only)

Out-of-pocket health expenditure


$$o(m_j) = p_m \times m_j,$$

The Optimal Tax System No Health Risk and No HI

	[1] Bench.	[2] No Health Risk	[3] No HI
Progressivity (au)	0.247	0.085	0.266
Scaling (λ)	2.411	1.090	1.117
Tax break	\$36, 360	\$4,041	\$42,425

Average and Marginal Tax Rates

Sensitivity Analysis I

[1] Opt. Benchmark					
	$\sigma = 2$	$\sigma = 3$	$\sigma = 4$		
Progr. (τ)	0.186	0.247	XXX		
Scaling (λ)	1.891	2.411	XXX		
Tax break	\$32, 324	\$36,360	\$xxx		
[2] Opt. UPH	H : <i>ρ</i> = 0.2			
	$\sigma = 2$	$\sigma = 3$	$\sigma = 4$		
Progr. (τ)	0.121	0.140	0.145		
Scaling (λ)	1.447	2.118	1.593		
Tax break	\$22, 223	\$26,260	\$26, 263		
[3]	[3] Opt. No Health Shock				
	$\sigma = 2$	$\sigma = 3$	$\sigma = 4$		
Progr. (τ)	0.037	0.085	0.110		
Scaling (λ)	0.905	1.090	1.188		
Tax break	\$2,021	\$4,041	\$6,062		

Sensitivity Analysis II

Endogenize survival probability following Suen (2006)

$$\pi_{j}(h) = 1 - \frac{1}{\exp\left(haz \mathbb{1}_{j} \times \left(\frac{h_{j}}{h_{\max}}\right)^{haz \mathbb{2}_{j}}\right)}$$
$$v(c, l, h) = u(c, l, h) + b$$

Medical spending leisure cost to make medical demand less price elastic

$$u(c,l,h) = \frac{\left(\left(c^{\eta} \times \left(\frac{1-l-1_{[l>0]}\overline{l}_j}{(1+m)^{\eta_m}}\right)^{1-\eta}\right)^{\kappa} \times h^{1-\kappa}\right)^{1-\sigma}}{1-\sigma}$$

	[1] Opt. Benchmark				
	Basic	Endog. Surv	Elast. m-spend \downarrow	H-productivity \uparrow	
Progr. (τ)	0.247	0.193	0.180	0.251	
Scaling (λ)	2.411	1.933	1.838	2.505	
Tax break	\$36,360	\$32, 324	\$30, 304	\$38, 384	
	[2] Opt. UPHI: $ ho=0.2$				
	Basic	Endog. Surv	Elast. m-spend \downarrow	H-productivity \uparrow	
Progr. (τ)	0.140	0.110	0.108	0.061	
Scaling (λ)	2.118	1.382	1.367	1.076	
Tax break	\$26,260	\$20,202	\$18, 182	\$4,041	
_	[3] Opt. No Health Shock				
	Basic	Endog. Survival	Elast. m-spend \downarrow	H-productivity \uparrow	
Progr. (τ)	0.085	XXX	0.073	0.017	
Scaling (λ)	1.090	XXX	1.019	0.727	
Tax break	\$4,041	\$xxx	\$2,021	\$1	

Conclusion

1 Health risks and insurance systems are important

- Riskier environments result in higher optimal income tax progressivity (more redistribution/insurance is needed)
- 3 The US income tax system should be more progressive
- 4 Introduction of ACA reduces optimal progressivity
- 5 Medicare for all would reduce optimal progressivity substantially

References I

- Badel, Alejandro and Mark Huggett. 2015. "Taxing Top Earners: A Human Capital Perspective." *Working Paper*.
- Benabou, Roland. 2002. "Tax and Education Policy in a Heterogeneous Agent Economy: What Levels of Redistribution Maximize Growth and Efficiency?" *Econometrica* 70(2):481–517.
- Brown, Paul. 2006. *Paying the Price: The High Cost of Prescription Drugs for Uninsured Californians*. CALPIRG Education Fund.
- Capatina, Elena. 2015. "Life-Cycle Effects of Health Risk." *Journal of Monetary Economics* 74:67–88.
- Chambers, Matthew, Carlos Garriga and Don E Schlagenhauf. 2009."Housing Policy and the Progressivity of Income Taxation." *Journal of Monetary Economics* 56(8):1116–1134.

References II

- Cole, Harold L., Soojin Kim and Dirk Krueger. 2016. "Analyzing the Effects of Insuring Health Risks: On the Trade-off between Short Run Insurance Benefits vs. Long Run Incentive Costs.".
- Conesa, Juan Carlos and Dirk Krueger. 2006. "On the Optimal Progressivity of the Income Tax Code." *Journal of Monetary Economics* 53:1425–1450.
- Erosa, Andres and Tatyana Koreshkova. 2007. "Progressive Taxation in a Dynastic Model of Human Capital." *Journal of Monetary Economics* 54:667–685.
- Guner, Nezih, Martin Lopez-Daneri and Gustavo Ventura. 2016."Heterogeneity and Government Revenues: Higher Taxes at the Top?" Journal of Monetary Economics 80:69–85.
- Guvenen, Fatih, Burhanettin Kuruscu and Serdar Ozkan. 2014. "Taxation of Human Capital and Wage Inequality: A Cross-country Analysis." *The Review of Economic Studies* 81(2):818–850.

References III

Heathcote, Jonathan, Kjetil Storesletten and Giovanni L Violante. 2017.
"Optimal Tax Progressivity: An Analytical Framework." *Quarterly Journal* of Economics 132(4):1693–1754.

- Jeske, Karsten and Sagiri Kitao. 2009. "U.S. Tax Policy and Health Insurance Demand: Can a Regressive Policy Improve Welfare?" *Journal of Monetary Economics* 56(2):210–221.
- Jung, Juergen and Chung Tran. 2016a. "Market Inefficiency, Insurance Mandate and Welfare: U.S. Health Care Reform 2010." *Review of Economic Dynamics* 20:132–159.
- Jung, Juergen and Chung Tran. 2016*b*. "Social Health Insurance: A Quantitative Exploration." Working Paper, Towson University.
- Jung, Juergen, Chung Tran and Matthew Chambers. 2017. "Aging and Health Financing in the US: A General Equilibirum Analysis." *European Economic Review* 100:428–462.

References IV

- Kopecky, Karen A and Tatyana Koreshkova. 2014. "The Impact of Medical and Nursing Home Expenses on Savings." *American Economic Journal: Macroeconomics* 6(3):29–72.
- Krueger, Dirk and Alexander Ludwig. 2016. "On the Optimal Provision of Social Insurance: Progressive Taxation versus Education Subsidies in General Equilibrum." *Journal of Monetary Economics* 77:72–98.
- Pashchenko, Svetlana and Ponpoje Porapakkarm. 2013. "Quantitative Analysis of Health Insurance Reform: Separating Regulation from Redistribution." *Review of Economic Dynamics* 16 (3):383–404.
- Phelps, Charles E. 2003. *Health Economics*. Upper Saddle River, New Jersey: Pearson Education Inc.
- Suen, Richard M. H. 2006. "Technological Advance and the Growth in Health Care Spending." Economie D'Avant Garde, Research Report No. 13. University of Rochester.

References V

Suits, Daniel B. 1977. "Measurement of Tax Progressivity." *The American Economic Review* 67(4):747–752.

Supplementary Material

Worker's Dynamic Optimization Problem

$$V(x_{j}) = \max_{\{c_{j}, l_{j}, m_{j}, a_{j+1}, in_{j+1}\}} \left\{ u(c_{j}, h_{j}, l_{j}) + \beta \pi_{j} E\left[V(x_{j+1}) \mid \varepsilon_{j}^{l}, \varepsilon_{j}^{h}, \varepsilon_{j}^{GHI} \right] \right\}$$

$$\begin{pmatrix} (1 + \tau^{C}) c_{j} + (1 + g) a_{j+1} + o(m_{j}) \\ + 1_{\{in_{j+1}=1\}} \operatorname{prem}^{\mathsf{IHI}}(j, h) + 1_{\{in_{j+1}=2\}} \operatorname{prem}^{\mathsf{GHI}} \\ = y_{j}^{W} - tax_{j} + t_{j}^{\mathsf{SI}},$$

 $0 \hspace{0.1in} \leq \hspace{0.1in} \textit{a}_{j+1}, \hspace{0.1in} 0 \leq \textit{l}_{j} \leq 1,$

$$h_j = i\left(m_j, h_{j-1}, \delta^h, \epsilon_j^h\right)$$

Worker's Dynamic Optimization Problem

$$\begin{array}{lll} y_{j}^{W} &=& e\left(\vartheta,h_{j},\varepsilon_{j}^{l}\right) \times l_{j} \times w + R\left(a_{j}+t^{\mathsf{Beq}}\right) + \mathsf{profits}, \\ tax_{j} &=& \tilde{\tau}\left(\tilde{y}_{j}^{W}\right) + tax_{j}^{SS} + tax_{j}^{\mathsf{Mcare}}, \\ \tilde{y}_{j}^{W} &=& y_{j}^{W} - a_{j} - t^{\mathsf{Beq}} - \mathbf{1}_{[in_{j+1}=2]}\mathsf{prem}^{\mathsf{GHI}} - 0.5\left(tax_{j}^{SS} + tax_{j}^{\mathsf{Med}}\right), \\ tax_{j}^{SS} &=& \tau^{\mathsf{Soc}} \times \min\left(\bar{y}_{ss}, \ e\left(\vartheta,h_{j},\varepsilon_{j}^{l}\right) \times l_{j} \times w - \mathbf{1}_{[in_{j+1}=2]}\mathsf{prem}^{\mathsf{GHI}}\right), \\ tax_{j}^{\mathsf{Mcare}} &=& \tau^{\mathsf{Mcare}} \times \left(e\left(\vartheta,h_{j},\varepsilon_{j}^{l}\right) \times l_{j} \times w - \mathbf{1}_{[in_{j+1}=2]}\mathsf{prem}^{\mathsf{GHI}}\right), \\ t_{j}^{\mathsf{SI}} &=& \max\left[0, \ \underline{c} + o\left(m_{j}\right) + tax_{j} - y_{j}^{W}\right]. \end{array}$$

Retiree's Dynamic Optimization Problem

$$V(x_j) = \max_{\{c_j, m_j, a_{j+1}\}} \left\{ u(c_j, h_j) + \beta \pi_j E\left[V(x_{j+1}) \mid \varepsilon_j^h\right] \right\}$$

s.t.

$$\begin{split} \left(1 + \tau^{\mathsf{C}}\right) c_{j} + \left(1 + g\right) a_{j+1} + \gamma^{\mathsf{Mcare}} \times p_{m}^{\mathsf{Mcare}} \times m_{j} + \mathsf{prem}^{\mathsf{Mcare}} \\ &= R\left(a_{j} + t_{j}^{\mathsf{Beq}}\right) - tax_{j} + t_{j}^{\mathsf{Soc}} + t_{j}^{\mathsf{SI}}, \\ &a_{j+1} \geq 0, \end{split}$$

where

$$\begin{array}{lcl} tax_{j} & = & \tilde{\tau}\left(\tilde{y}_{j}^{R}\right) \\ \tilde{y}_{j}^{R} & = & t_{j}^{\mathrm{Soc}} + r \times \left(a_{j} + t_{j}^{\mathrm{Beq}}\right) + \mathrm{profits} \\ & t_{j}^{\mathrm{SI}} & = & \max\left[0, \underline{c} + \gamma^{\mathrm{Mcare}} \times p_{m}^{\mathrm{Mcare}} \times m_{j} + tax_{j} - R\left(a_{j} + t_{j}^{\mathrm{Beq}}\right) - t_{j}^{\mathrm{Soc}}\right] \end{array}$$

Back to Worker Problem

Insurance Sector

$$(1 + \omega_{j,h}^{\mathsf{IHI}}) \sum_{j=2}^{J_1} \mu_j \int \left[\mathbf{1}_{[in_j(x_j)=1]} (1 - \rho^{\mathsf{IHI}}) p_m^{\mathsf{IHI}} m_{j,h}(x_{j,h}) \right] d\Lambda(x_{j,h})$$

$$= R \sum_{j=1}^{J_1-1} \mu_j \int \left(\mathbf{1}_{[in_{j,h}(x_{j,h})=1]} \mathsf{prem}^{\mathsf{IHI}}(j,h) \right) d\Lambda(x_{j,h})$$

$$(1 + \omega^{\mathsf{GHI}}) \sum_{j=2}^{J_1} \mu_j \int \left[\mathbf{1}_{[in_j(x_j)=2]} (1 - \rho^{\mathsf{GHI}}) p_m^{\mathsf{GHI}} m_j(x_j) \right] d\Lambda(x_j)$$

$$= R \sum_{j=1}^{J_1-1} \mu_j \int \left(\mathbf{1}_{[in_j(x_j)=2]} \mathsf{prem}^{\mathsf{GHI}} \right) d\Lambda(x_j),$$

Back to Remaining Parts

Pensions and Bequests

Pensions:

$$\sum_{j=J_1+1}^{J} \mu_j \int t_j^{\text{Soc}}(x_j) \, d\Lambda(x_j)$$

=
$$\sum_{j=1}^{J_1} \mu_j \int \tau^{\text{Soc}} \times (e_j(x_j) \times l_j(x_j) \times w) \, d\Lambda(x_j)$$

Accidental Bequests:

$$\sum_{j=1}^{J_{1}} \mu_{j} \int t_{j}^{\mathsf{Beq}}\left(x_{j}\right) d\Lambda\left(x_{j}\right) = \sum_{j=1}^{J} \int \tilde{\mu}_{j} \mathsf{a}_{j}\left(x_{j}\right) d\Lambda\left(x_{j}\right)$$

Back to Remaining Parts

Government Budget

$$C_{G} + T^{SI} + \sum_{j=2}^{J_{1}} \mu_{j} \int \mathbb{1}_{[in_{j}(x_{j})=3]} \left(1 - \rho^{\mathsf{MAid}}\right) p_{m}^{\mathsf{MAid}} m_{j}(x_{j}) d\Lambda(x_{j})$$
$$+ \sum_{j=J_{1}+1}^{J} \mu_{j} \int \left(1 - \rho^{R}\right) p_{m}^{R} m_{j}(x_{j}) d\Lambda(x_{j})$$
$$\sum_{j=1}^{J} \mu_{j} \int \left[\tau^{C} c(x_{j}) + tax_{j}(x_{j})\right] d\Lambda(x_{j})$$
$$+ \sum_{j=J_{1}+1}^{J} \mu_{j} \int \mathsf{prem}^{R}(x_{j}) d\Lambda(x_{j}) + \sum_{j=1}^{J_{1}} \mu_{j} \int tax_{j}^{\mathsf{Med}} d\Lambda(x_{j})$$

Back to Remaining Parts

=

Competitive Equilibrium Definition I

• Given
$$\left\{\Pi_{j}^{I}, \Pi_{j}^{h}, \Pi_{j,\vartheta}^{\text{GHI}}\right\}_{j=1}^{J}, \left\{\pi_{j}\right\}_{j=1}^{J}$$
 and
• $\left\{tax\left(x_{j}\right), \tau^{C}, \text{prem}^{R}, \tau^{SS}, \tau^{\text{Med}}\right\}_{j=1}^{J},$

a competitive equilibrium is a collection of sequences of:

- distributions $\{\mu_j, \Lambda_j(x_j)\}_{j=1}^J$
- individual household decisions $\{c_j(x_j), l_j(x_j), a_{j+1}(x_j), m_j(x_j), in_{j+1}(x_j)\}_{j=1}^J$
- aggregate stocks of capital and labor $\{K, L, K_m, L_m\}$
- factor prices $\{w, q, R, p_m\}$

$$\blacksquare$$
 markups $\left\{ \omega^{\rm IHI}, \omega^{\rm GHI}, \nu^{\rm in} \right\}$ and

• insurance premiums $\left\{ \text{prem}^{\text{GHI}}, \text{prem}^{\text{IHI}}(j,h) \right\}_{j=1}^{J}$

such that:

Competitive Equilibrium Definition II

(a) $\{c_j(x_j), l_l(x_j), a_{j+1}(x_j), m_j(x_j), in_{j+1}(x_j)\}_{j=1}^J$ solves the consumer problem

(b) the firm first order conditions hold:

$$w = F_L(K, L) = p_m F_{m,L}(K_m, L_m)$$
$$q = F_K(K, L) = p_m F_{m,K}(K_m, L_m)$$
$$R = q + 1 - \delta$$

(c) markets clear

Competitive Equilibrium Definition III

$$\begin{split} \mathcal{K} + \mathcal{K}_m &= \sum_{j=1}^J \mu_j \int \left(a\left(x_j \right) \right) d\Lambda \left(x_j \right) + \sum_{j=1j}^J \int \tilde{\mu}_j a_j \left(x_j \right) d\Lambda \left(x_j \right) \\ T^{\text{Beq}} &= \sum_{j=1j}^J \int \tilde{\mu}_j a_j \left(x_j \right) d\Lambda \left(x_j \right) \\ L + L_m &= \sum_{j=1}^{J_1} \mu_j \int e_j(x_j) l_j \left(x_j \right) d\Lambda \left(x_j \right) \\ \sum_{j=1}^J \mu_j \int \left(m\left(x_j \right) \right) d\Lambda \left(x_j \right) &= \mathcal{F}_m \left(\mathcal{K}_m, \mathcal{N}_m \right), \end{split}$$

Competitive Equilibrium Definition IV

(d) the aggregate resource constraint holds

$$C_{G} + (1+g) S + \sum_{j=1}^{J} \mu_{j} \int c(x_{j}) d\Lambda(x_{j}) = Y + (1-\delta) K$$

(e) the government programs clear

(f) the budget conditions of the insurance companies hold, and(g) the distribution is stationary

$$(\mu_{j+1}, \Lambda(x_{j+1})) = T_{\mu,\Lambda}(\mu_j, \Lambda(x_j)),$$

where $T_{\mu,\Lambda}$ is a one period transition operator

Back to Remaining Parts

Human Capital Formation

Human capital:

$$e = e_j\left(\vartheta, h_j, \epsilon'\right) = \epsilon' \times \left(\overline{wage}_{j,\vartheta}\right)^{\chi} \times \left(\exp\left(\frac{h_j - \overline{h}_{j,\vartheta}}{\overline{h}_{j,\vartheta}}\right)\right)^{1-\chi}$$

- $\overline{wage}_{i,\vartheta}$ from MEPS
- ϵ^{l} and Π^{l} from prior studies using Tauchen (1986) procedure

Back to Health Shock

Calibration: Group Insurance Offers

- Offer shock: $\epsilon^{GHI} = \{0, 1\}$ where
 - 0 indicates no offer and
 - 1 indicates a group insurance offer
- MEPS variables OFFER31X, OFFER42X, and OFFER53X
- Probability of a GHI offer is highly correlated with income
- $\Pi_{j,\vartheta}^{h}$ with elements $\Pr\left(\epsilon_{j+1}^{\text{GHI}}|\epsilon_{j}^{\text{GHI}},\vartheta\right)$
- $\blacksquare \ \vartheta$ indicates permanent income group

Calibration: Coinsurance Rates

- Coinsurance rates from MEPS
- Premiums clear insurance constraints
- Markup profits of GHI are zero
- Markup profits of IHI are calibrated to match IHI take up rate
- IHI profits used to cross-subsidize GHI

Calibration: Pension Payments

■ *L* is average/aggregate effective human capital and

- $w \times L$ average wage income
- Pension payments: $t^{\text{Soc}}(\vartheta) = \Psi(\vartheta) \times w \times L$
- where $\Psi(\vartheta)$ is replacement rate that determines the size of pension payments
- Total pension amount to 4.1 percent of GDP

Calibration: Public Health Insurance

- Premium for medicare at 2.11% of GDP (Jeske and Kitao (2009))
- Coinsurance rates for Medicare and Medicaid from MEPS
- Calibrated: Medicaid eligibility FPL_{Maid} at 60% of FPL to match % on Medicaid
- Calibrated: Asset test for Medicaid to match Medicaid take-up profile

Calibration: Taxes

Gouveia and Strauss (1994) for federal progressive income tax

$$\tilde{\tau}\left(\tilde{y}\right) = \lambda \left[\tilde{y} - \left(\tilde{y}^{-\tau_1} + \tau_2\right)^{-1/\tau_1}\right]$$

- Medicare tax is 2.9%
- Social security tax is 9%
- Consumption tax is 5%

External Parameters

Parameters:		Explanation/Source:
- Periods working	$J_1 = 9$	
- Periods retired	$J_2 = 6$	
- Population growth rate	n = 1.2%	CMS 2010
- Years modeled	years = 75	from age 20 to 95
- Total factor productivity	A = 1	Normalization
- Capital share in production	$\alpha = 0.33$	KydlandPescott1982
- Capital in med. services prod.	$\alpha_m = 0.26$	Donahoe (2000)
- Capital depreciation	$\delta = 10\%$	KydlandPescott1982
- Health depreciation	$\delta_{h,j} = [0.6\% - 2.13\%]$	MEPS 1999/2009
- Survival probabilities	π_j	CMS 2010
- Health Shocks	see appendix	MEPS 1999/2009
- Health transition prob.	see appendix	MEPS 1999/2009
- Productivity shocks	see appendix	MEPS 1999/2009
- Productivity transition prob.	see appendix	MEPS 1999/2009
- Group insurance transition prob.	see appendix	MEPS 1999/2009

Calibrated Parameters

Parameters:		Explanation/Source:	Nr.M.
- Relative risk aversion	$\sigma = 3.0$	to match $\frac{K}{Y}$ and R	1
- Pref. cons. leisure	$\eta = 0.43$	to match labor supply and $\frac{p \times M}{Y}$	1
- Pref c and / vs. h	$\kappa = 0.75$	to match labor supply and $\frac{p \times M}{Y}$	1
- Discount factor	eta=1.0	to match $\frac{K}{Y}$ and R	1
- GHI markup profits	$\omega^{ m GHI}=0$	to match GHI take-up	1
- IHI markup profits	$\omega_{j,h} \in [0.6-1.5]$	to match spending profile	8
- Health production productivity	$\phi_j \in [0.2-0.45]$	to match spending profile	15
- TFP in medical production	$A_m = 0.4$	to match $\frac{p \times M}{Y}$	1
- Production parameter of health	$\xi = 0.26$	to match $\frac{p \times M}{Y}$	1
- Effective labor services production	$\chi = 0.85$	to match labor supply	1
- Health productivity	heta=1.0	used for sensitivity analysis	1
- Pension replacement rate	$\Psi = 40\%$	to match $ au^{\textit{soc}}$	1
- Fixed time cost of labor	$ar{l}_j \in [0.0-0.7]$	to match average work hours	9
- Minimum health state	$h_{\min} = 0.01$	to match health spending	1
- Asset test level	ā _{Maid} = \$150, 000	to match Medicaid take-up	1
-Total Nr. of paras			44

Back to Calibration